Inhibition of catalase activity as an early response of Arabidopsis thaliana cultured cells to the phytotoxin fusicoccin.
نویسندگان
چکیده
In Arabidopsis thaliana cells, fusicoccin (FC) treatment induced an early and marked increase in the extracellular H(2)O(2) level. It also increased the huge hypo-osmotic stress-induced oxidative wave and, in addition, prevented the H(2)O(2) peak drop. These effects were apparently not linked to changes in either cytoplasmic pH or cytoplasmic free calcium concentration, since they occurred independently of the activity state of the plasma membrane (PM) H(+)-ATPase and neither influx nor efflux of (45)Ca(2+) was modified by FC. In the presence of diphenylene iodonium (DPI), inhibiting the PM NADPH oxidase presumably responsible for reactive oxygen species (ROS) production, no apoplastic H(2)O(2) development was detected either with or without FC. However, no increase in DPI-sensitive ferricyanide reduction, but rather a gradual decrease, occurred with FC. These results suggested that the H(2)O(2) increase observed with FC was not due to a overproduction of ROS but, more probably, to a reduced capability of FC-treated cells to degrade the H(2)O(2) formed. This view, at first supported by the finding that FC-treated cells failed to break down exogenously supplied H(2)O(2), was clearly confirmed by a series of measurements on exogenous catalase activity, tested in cell-free media of FC-treated samples. This assay, in fact, allowed ascertainment and partial characterization of an as yet unidentified factor increasingly accumulating in the incubation medium of FC-treated cells, behaving as a non-competitive catalase inhibitor and able to reduce markedly the cell's capability for H(2)O(2) scavenging.
منابع مشابه
Differential Expression of Arabidopsis thaliana Acid Phosphatases in Response to Abiotic Stresses
The objective of this research is to identify Arabidopsis thaliana genes encoding acid phosphatases induced by phosphate starvation. Multiple alignments of eukaryotic acid phosphatase amino acid sequences led to the classification of these proteins into four groups including purple acid phosphatases (PAPs). Specific primers were degenerated and designed based on conserved sequences of PAPs isol...
متن کاملYeast Two Hybrid cDNA Screening of Arabidopsis thaliana for SETH4 Protein Interaction
SETH4 coding sequence with 2013 bp is a member of gene family expressed in gametophytic tissues of Arabidopsis thaliana. This fragment was PCR amplified using Kod Hi Fi DNA polymerase enzyme. This fragment was cloned into pGBKT7 bate vector and transformed E. coli DH5? cells containing vector were selected on LB medium containing Kanamycin. Finally, pGBKT7-SETH4 bate was transformed into yeast ...
متن کاملNegative control of Strictisidine synthase like-7 gene on salt stress resistance in Arabidopsis thaliana
Strictosidine synthase-like (SSL) is a group of gene families in the Arabidopsis genome, which whose orthologues in other plants are key enzymes in mono-terpenoid indole-alkaloid biosynthesis pathway. The SSL7 is upregulated upon treatments of Arabidopsis plants with signaling molecules such as SA, methyl jasmonate and ethylene. To find the functional role of the gene, a T-DNA-mediated knockout...
متن کاملFusicoccin Activates KAT1 Channels by Stabilizing Their Interaction with 14-3-3 Proteins.
Plants acquire potassium (K+) ions for cell growth and movement via regulated diffusion through K+ channels. Here, we present crystallographic and functional data showing that the K+ inward rectifier KAT1 (K+Arabidopsis thaliana 1) channel is regulated by 14-3-3 proteins and further modulated by the phytotoxin fusicoccin, in analogy to the H+-ATPase. We identified a 14-3-3 mode III binding site...
متن کاملGene transcriptomic profile in arabidopsis thaliana mediated by radiation-induced bystander effects
Background: The in vivo radiation-induced bystander effects (RIBE) at the developmental, genetic, and epigenetic levels have been well demonstrated using model plant Arabidopsis thaliana (A. thaliana). However, the mechanisms underlying RIBE in plants are not clear, especially lacking a comprehensive knowledge about the genes and biological pathways involved in the RIBE in plants. Materials and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of experimental botany
دوره 58 15-16 شماره
صفحات -
تاریخ انتشار 2007